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In this paper we discuss the traditional approaches to the problem of the arrow of time.
On the basis of this discussion we adopt a global and nonentropic approach, according
to which the arrow of time has a global origin and is an intrinsic, geometrical feature
of space–time. Finally, we show how the global arrow is translated into local terms as
a local time-asymmetric flux of energy.
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1. INTRODUCTION

Since the nineteenth century, the problem of the direction of time has been one
of the most controversial questions in the foundations of physics. Many theoretical
contributions have been made in the seeking of an answer to the problem. However,
despite of all the debates, very little progress toward a consensus has been achieved.
Our impression is that this situation is mainly due to the fact that different concepts
are usually confused in the discussions and different problems are traditionally
subsumed under the same label. For this reason, we will attempt to disentangle
and clarify some of the issues involved in the debates about the direction of time.

In particular, we will argue that it is necessary to carefully distinguish between
the problem of irreversibility and the problem of the arrow of time: whereas the
first one can be addressed in local terms, the second one requires global consider-
ations. On this basis, we will define the arrow of time as an intrinsic, geometrical
feature of space–time, rejecting the traditional entropic approach according to
which the direction of time is defined by the gradient of the entropy function of the
universe.
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2. TIME-REVERSAL INVARIANCE AND IRREVERSIBILITY

In general, both concepts are invoked in the treatment of the problem of the
arrow of time, but usually with no elucidation of their precise meanings; this results
in confusions that contaminate many interesting discussions. For this reason, we
will start from providing some necessary definitions.

Time-reversal invariance is a property of dynamical equations (laws) and,
a fortiori, of the set of its solutions (evolutions). Reversibility is a property of a
single solution of a dynamical equation.

Definition 2.1. A dynamical equation istime-reversal invariantif it is invariant
under the transformationtt →−t ; as a result, for each solutionf (t), f (−t) is also
a solution.

Definition 2.2. A solution of a dynamical equation isreversibleif it corresponds
to a closed curve in phase space.

It is quite clear that both concepts are different to the extent that they apply
to different entities: equations and solutions, respectively. Furthermore, they are
not even correlated in the sense that timereversal invariant equations always have
reversible solutions. In fact, time-reversal invariant equations can have irreversible
solutions.5

When both concepts are elucidated in this way,the problem of irreversibility
can be clearly stated:how to explain irreversible evolutions in terms of time-
reversal invariant laws. But once it is recognized that irreversibility and time-
reversal invariance apply to different entities, it is easy to find a conceptual answer
to the problem: nothing prevents a time-reversal invariant equation from having
irreversible solutions. Of course, this answer does not provide the full solution of
the problem: a great deal of theoretical work is needed for obtaining irreversible
evolutions from an underlying time-reversal invariant dynamics (see, for instance,
Bohm, 1979; Bohm and Gadella, 1989; Castagnino and Gunzig, 1997a; Sudarshan
et al., 1978). Here we only mean that, in order to face the problem of irreversibility,
the question about the arrow of time does not need to be invoked: the distinction
between the two directions of time is usually assumed when the irreversible evo-

5 For instance, let us consider the following autonomous system:dq
dt = F(q, p), dp

dt = G(q, p), such
that both equations are time-reversal invariant (F(q, p) = −F(q,−p), G(q, p) = G(q,−p)). This
system defines an attractor when (i) there is a fixed point in the semiplanep > 0, (ii) the Jacobian
matrix of the system computed in the fixed point has positive determinant (∂F

∂q
∂G
∂p − ∂F

∂p
∂G
∂q > 0),

and (iii) the trace of the Jacobian matrix of the system computed in the fixed point is negative
( ∂F
∂q − ∂G

∂p < 0). In this case, the fixed point is an attractor and the trajectories going to this attractor
are irreversible. When the transformationt →−t, p→−p is applied, the determinant of the acobian
matrix does not change, but the trace changes its sign: the attractor turns into a repeller. The attractor
and the repeller are a couple of t-symmetric twins (see section 4.1).
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lutions are conceived as processes going from nonequilibrium to equilibrium or to
preparation to measurement toward the future.

3. WHAT IS “THE PROBLEM OF THE ARROW OF TIME”?

The problem of the arrow of time owes its origin to the intuitive asymmetry
between past and future. The main obstacle to be encountered in answering this
question lies in our anthropocentric perspective: the difference between past and
future is so deeply rooted in our language and our thoughts that it is very difficult to
shake off these asymmetric assumptions. In fact, traditional discussions around the
problem of the arrow of time are usually subsumed under the label “the problem
of the direction of time,” as if we could find an exclusively physical criterion for
singling out the direction of time, identified with what we call “the future.” But
there is nothing in physics that distinguishes, in a nonarbitrary way, between past
and future as we conceive them: physics does not include the word “future” with the
sense it has in our ordinary language. It might be objected that physics implicitly
assumes this distinction with the use of temporally asymmetric expressions, like
“future light cone,” “initial conditions,” “increasing time,” and so on. However this
is not the case, and the reason relies on the distinction between “conventional” and
“substantial.”

Two objects areformally identicalwhen there is a permutation that inter-
changes the objects but does not change the properties of the system to which they
belong. In physics it is usual to work with formally identical objects: the two lobes
of a light cone, the two spin senses, etc.

i. We will say that we establish aconventionaldifference when we call two
formally identical objects with two different names, e.g., when we assign
different signs to the two spin senses.

ii. We will say that the difference between two objects issubstantialwhen
we give different names to two objects which are not formally identical
(see Penrose, 1979; Sachs, 1987). In this case, even though the names
are conventional, the difference is substantial. e.g., the difference between
the two poles of the theoretical model of a magnet is conventional since
both poles are formally identical; the difference between the two poles of
the Earth is substantial because in the north pole there is an ocean and in
the south pole there is a continent (and the difference between ocean and
continent remains substantial even if we conventionally change the names
of the poles).

Once this point is accepted, it turns out to be clear that physics only distin-
guishes between “past” and “future” in a conventional way. Therefore, the prob-
lem cannot yet be posed in terms of singling out the future direction of time:
the problem of the arrow of time becomes the problem of finding asubstantial
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differencebetween the two temporal directions. But if this is our central question,
we cannot project our independent intuitions about past and future for solving it
without beginning the question. If we want to address the problem of the arrow
of time from a perspective purged of our temporal intuitions, we must avoid the
conclusions derived from subtly presupposing time-asymmetric notions. As Price
(1996) claims, it is necessary to stand at a point outside of time, and thence to
regard reality in atemporal terms: this is “the view from nowhen.” This atempo-
ral standpoint prevents us from using the temporally asymmetric expressions of
our ordinary language (as “past” and “future”) in a nonconventional way: the as-
sumption about the difference between past and future or between preparation and
measurement is not yet legitimate in the context of the problem of the arrow of time.

But then, what does “the arrow of time” mean when we accept this constraint?
Of course, the traditional expression coined by Eddington has only a metaphorical
sense: its meaning must be understood by analogy. We recognize the difference
between the head and the tail of an arrow on the basis of its geometrical properties;
therefore, we can substantially distinguish between both directions, head-to-tail
and tail-to-head, independently of our particular perspective. Analogously, we will
conceivethe problem of the arrow of timein terms ofthe possibility of establishing a
substantial distinction between the two directions of time on the basis of exclusively
physical arguments.

4. TRADITIONAL APPROACHES

4.1. The Traditional Local Approach

The traditional local approach owes its origin to the attempts of reducing
thermodynamics to statistical mechanics: in this context, the usual answer to the
problem of the arrow of time consists in defining the future as the direction of time
in which entropy increases. How ever, already in 1912 Ehrenfest and Ehrenfest
(1959) noted that, if the entropy of a closed system increases toward the future,
such increase is matched by a similar one in the past of the system. In other
words, if we trace the dynamical evolution of a nonequilibrium system at the
initial time back into the past, we will obtain states that are more uniform than the
nonequilibrium initial state. Gibbs’ answer to the Ehrenfests’ challenge was based
on the assumption that probabilities are determined from prior events to subsequent
events. But this answer clearly violates the “nowhen” standpoint: probabilities are
blind to temporal direction; then, any resource to the distinction between prior and
subsequent events commits a petitio principii by presupposing the arrow of time
from the start.

It is interesting to note that this old discussion can be generalized to the case of
any kind of irreversible evolution arising from time-reversal invariant laws. In fact,
time-reversal invariant equations always produce ”t-symmetric twins,” that is, two
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mathematical structures symmetrically related by a time-reversal transformation:
each “twin,” which usually represents an irreversible evolution, is the temporal
mirror image of the other “twin.” For instance, electromagnetism provides a pair
of advanced and retarded solutions, that are usually related with incoming and
outgoing states in scattering situations as described by Lax–Phillips scattering
theory (Lax and Phillips, 1979). In irreversible quantum mechanics, the analytical
extension of the energy spectrum of the quantum system’s Hamiltonian into the
complex plane leads to poles in the lower half-plane (usually related with decay-
ing unstable states), and symmetric poles in the upper half-plane (usually related
with growing unstable states) (see Castagnino and Laura, 1997). However, at this
level the twins are only conventionally different: we cannot distinguish between
advanced and retarded solutions or between lower and upper poles without assum-
ing temporally asymmetric notions, as the asymmetry between past and future or
between preparation and measurement. Here the real challenge consists in sup-
plying a nonconventional criterion for choosing one of the twins as the physically
relevant: such a criterion must establish a substantial difference between the two
members of the pair. But it is precisely this kind of criterion what exceeds the
context of local physics.

The problem can also be posed in different terms. Let us accept that we have
solved the irreversibility problem; so we have the description of all the irreversible
evolutions, say, decaying processes, of the universe. However, since we have not
yet established a substantial difference between both directions of time, we have
no way to decide toward which temporal direction each decay proceeds. Of course,
we would obtain the arrow of time if we could coordinate the processes in such a
way that all of them parallelly decay toward the same temporal direction. But this is
precisely what local physics cannot offer: only by means of global considerations
all the decaying processes can be coordinated. This means that the global arrow
of time plays the role of the background scenario where we can meaningfully
speak of the temporal direction of irreversible processes, and this scenario cannot
be established by local theories that only describe phenomena confined in small
regions of space–time.

4.2. The Traditional Global Approach

When, in the late nineteenth century, Boltzmann developed the probabilis-
tic version of his theory in response to the objections raised by Loschmidt and
Zermelo, he had to face a new challenge: how to explain he highly improbable
current state of our world. In order to answer this question, Boltzmann (1897)
offered the first cosmological approach to the problem. Since this seminal work,
many authors have related the temporal direction past-to-future to the gradient of
the entropy function of the universe. For instance, Feynman asserts: “For some
reason, the universe at one time had a very low entropy for its energy content,
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and since then entropy has increased. So that is the way toward future. That is the
origin of all irreversibility” (Feynmanet al., 1964; Mattews, 1979). In a similar
sense, Davies claims that “There exists an arrow of time only because the universe
originates in a less-than-maximum entropy state” (Davies, 1994). Even if these
authors admit the need of global arguments for solving the problem of the arrow
of time, they coincide in considering that it must be addressed in terms of entropy.

The global entropic approach rests on two assumptions: that it is possible to
define entropy for a complete cross-section of the universe, and that there is an only
time for the universe as a whole. However, both assumptions involve difficulties.
In the first place, the definition of entropy in cosmology is still a very controversial
issue: there is not a consensus regarding how to define a global entropy for the
universe. In fact, it is usual to work only with the entropy associated with matter and
radiation because there is not yet a clear idea about how to define the entropy due to
the gravitational field. In the second place, when general relativity comes into play,
time cannot be conceived as a background parameter which, as in prerelativistic
physics, is used to mark the evolution of the system. Therefore, the problem of the
arrow of time cannot legitimately be posed, from the beginning, in terms of the
entropy gradient between the two ends of a linear and open time.

Nevertheless, these points are not the main difficulty: there is a conceptual ar-
gument for abandoning the traditional entropic approach. Entropy is a phenomeno-
logical property: a given value of entropy is compatible with many configurations
of a system. The question is whether there is a more fundamental property of the
universe which allows us to distinguish between both temporal directions. On the
other hand, if the arrow of time reflects a substantial difference between both di-
rections of time, it is reasonable to think that it is an intrinsic property of time, or
better, of space–time, and not a secondary feature depending on a phenomenolog-
ical property. For these reasons we will follow Earman’s “Time Direction Heresy”
(Earman, 1974), according to which the arrow of time is an intrinsic, geometrical
property of spacetime which does not need to be reduced to a nontemporal feature
as entropy. In other words, the geometrical approach to the problem of the arrow
of time has conceptual priority over the entropic approach, since the geometrical
properties of the universe are more basic than its thermodynamic properties.

5. CONDITIONS FOR A GLOBAL AND NONENTROPIC
ARROW OF TIME

5.1. Temporal Orientability

In a Minkowski space–time, it is always possible to define the class of all the
future light semicones (lobes) and the class of all the past light semicones (where
the labels “future” and “past” are conventional). In general relativity the metric can
always be locally approximated, in small regions of space–time, to the Minkowski
form. However, on the large scale, we do not expect the manifold to be flat because
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gravity can no longer be neglected. Many different topologies are consistent with
Einstein’s field equations; in particular, the possibility arises of space–time being
curved along the spatial dimension in such a way that the spacelike sections of the
universe become the three-dimensional analogous of a Moebius band; in technical
terms it is said that the space–time is temporally nonorientable.

Definition 5.1. A space–time istemporally orientableiff there exists a continuous
nonvanishing vector field on it which is timelike with respect to its metric.

By means of this field, the set of all lobes of the manifold can be split into
two equivalence classes,C+ andC−: the lobes ofC+ contain the vectors of the
field and the lobes ofC− do not contain them. On the other hand, in a temporally
nonorientable space–time it is possible to transform a future pointing timelike
vector into a past pointing timelike vector by means of a continuous transformation
that always keeps nonvanishing timelike vectors timelike; therefore, the distinction
between future lobes and past lobes cannot be univocally definable on a global
level. This means that the temporal orientability of space–time is a precondition
for defining a global arrow of time, since if space–time is not temporally orientable,
it is not possible to distinguish between the two temporal directions for the universe
as a whole.

However, not all accept this conclusion. For instance, Mattews (1979) claims
that a space–time may have a regional but not a global arrow of time if the arrow is
defined by means of local considerations. However, even from this local approach
(which we have rejected in the previous section), temporal orientability cannot be
avoided. Let us suppose that there were a local non–time-reversal invariant lawL,
which defines regional arrows of time that disagree when compared by means of
continuous timelike transport. The trajectory of the transport will pass through a
frontier point between both regions: in a region around this point the arrow of time
will be not univocally defined, and this amounts to a breakdown of the validity of
L in such a point. But this fact contradicts the methodological principle of univer-
sality, unquestioningly accepted in contemporary cosmology, according to which
the laws of physics are valid in all points of the space–time. The strategy to escape
this conclusion would consist in refusing to assign any meaning to the timelike
continuous transport. This strategy would only be acceptable if the two regions
with different arrows were physically isolated: this amounts to the disconnect-
edness of the space–time. But this fact would contradict another methodological
principle of cosmology, that is, the principle of uniqueness, according to which
there is only one universe and completely disconnected space–times are not usually
considered.6 These arguments show that the possibility of time arrows pointing

6 Even though there are quantum cosmologies exhibiting disconnected space–times, such models only
play an explanatory role since they are not testable in principle. Anyway, even if disconnected
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to opposite directions in different regions of the space–time is not an alternative
seriously considered in contemporary cosmology.

Astronomical observations provide empirical evidence that makes implau-
sible the temporal non-orientability of our space–time. In particular, there is no
astronomical observation of temporally inverted behavior in some (eventually very
distant) region of the universe.7 On the other hand, observational evidence in fa-
vor of the standard Friedman–Lemˆaitre-Robertson—Walker (FLRW) models plays
the role of indirect evidence for temporal orientability, since these space–times are
temporally orientable.

5.2. Cosmic Time

As it is well known, general relativity replaces the older conception of space-
through-time by the concept of space–time, where time becomes a dimension of
a four-dimensional manifold. But when the time measured by a physical clock
is considered, each particle of the universe has its ownproper time, that is, the
time registered by a clock carried by the particle. Since the curved space–time
of general relativity can be considered locally flat, it is possible to synchronize
the clocks fixed to particles whose parallel trajectories are confined in a small
region of space–time. But, in general, the synchronization of the clocks fixed to
all the particles of the universe is not possible. Only in certain particular cases all
the clocks can be coordinated by means of a cosmic time, which has the features
necessary to play the role of the temporal parameter in the evolution of the universe.

The issue can also be posed in geometrical terms. A space–time may be such
that it is not possible to partition the set of all events into equivalent classes such that
(i) each one of them is a spacelike hypersurface, and (ii) the hypersurfaces can be
ordered in time. There is a hierarchy of conditions which, applied to a temporally
orientable spacetime, avoid “anomalous” temporal features (see Hawking and
Ellis, 1973). The strongest condition is the existence of a global time.

Definition 5.2. A global time functionon the Riemannian manifoldM is a function
t : M → R whose gradient is everywhere timelike.

In other words, the value of the global time function increases along every
future directed nonspacelike curve. The existence of such a function guarantees

space–times were allowed, each connected region could be considered as a universe by itself, where
timelike continuous transport must be valid. This fact is relevant since we are interested in explaining
the time direction of our own connected universe.

7 In fact, supernovae evolutions always follow the same pattern (from “birth” to “death”), and there is
no trace of an inverted pattern in the whole visible universe. This is a relevant fact when we consider
that supernovae are the markers used to measure the longest distances in our universe, corresponding
to objects near the observability horizon.
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that the space–time is globally splittable into hypersurfaces of simultaneity which
define a foliation of the space–time (see Schutz, 1980).

Nevertheless, the fact that the space–time admits a global time function does
not yet permit to define a notion of simultaneity in an univocal manner and with
physical meaning. In order to avoid ambiguities in the notion of simultaneity,
we must choose a particular foliation. The foliationr according to which all the
worldline curves are orthogonal to all the hypersurfacesτ = const. is the proper
choice, because orthogonality recovers the notion of simultaneity of special rela-
tivity for small regions (tangent hyperplanes) of the hypersurfacesτ = const. (for
the necessary conditions see Misneret al., 1973). However, even if this condition
selects a particular foliation, it permits that the proper time interval between two
hypersurfaces of simultaneity depends on the particular worldline considered for
computing it. If we want to avoid this situation, we must impose as an additional
constraint: the proper time interval between two hypersurfacesτ = τ1 andτ = τ2

must be the same for all worldline curves. In this case, the metric results

ds2 = dt2− hij dxi dxj (1)

wheret is thecosmic timeand hij = hij (t, x1, x2, x3) is the three-dimensional
metric of each hypersurface of simultaneity.

Of course, the existence of a cosmic time imposes a significant topological
and metric limitation on the space–time. This means that, with no cosmic time,
there is not a single time which can be considered as the parameter of the evolu-
tion of the universe and, therefore, it is nonsensical to speak of the two directions
of time for the universe as a whole. Therefore, the possibility of defining a cos-
mic time is a precondition for meaningfully speaking of a global arrow of time.
This fact supplies an additional argument against the entropic approach, which
takes for granted the possibility of defining the entropy function of the universe.
But this amounts to the assumption that (i) the space–time can be partitioned in
spacelike hypersurfaces on which the entropy of the universe can be defined, and
(ii) the space–time possesses a cosmic time or, at least, a global time on which
the entropy gradient can be computed. When the possibility of space–times with
no cosmic time is recognized, it is difficult to deny the conceptual priority of the
geometrical structure of space–time over entropic features in the context of our
problem.

The question about the existence of a cosmic time has not a single answer
for all possible relativistic universes. But, what can we say about our universe?
Cosmology offers a simple answer on the basis of the cosmological principle
and the assumption of expansion. Since the universe is spatially homogeneous and
isotropic on the large scale, it is possible to find a family of spacelike hypersurfaces
which can be labeled by the proper time of the worldlines that orthogonally thread
through them: these labels define the cosmic time. In the Robertson–Walker metric
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corresponding to flat (ork = 0) FLRW models:

ds2 = dt2− a2(t)(dx2+ dy2+ dz2)

the cosmic time is represented by the variablet , and the scale factora is a scalar
only function oft ; this is the time by means of which cosmologists estimate the age
of the universe. In this sense, FLRW models recover a notion of time analogous
to the conception of prerelativistic physics, where time is an ordering parameter
with respect to which the evolution of the system is described.

5.3. Time-Asymmetry

Of course, temporal orientability is merely a necessary condition for defining
the global arrow of time, but it does not provide a physical, nonarbitrary criterion
for distinguishing between the two directions of time. As we will see, such a
distinction requires the time-asymmetry of the universe.

It is usually accepted that the obstacle for defining the arrow of time lies in the
fact that the fundamental laws of physics are time-reversal invariant.8 Nevertheless,
this common position can be objected on the basis of the elucidation of the concepts
of time-reversal invariance and time-symmetry: whereas time-reversal invariance
is a property of dynamical equations (laws), time-symmetry is a property of a
single solution (evolution) of an dynamical equation.

Definition 5.3. A solution f (t) of a dynamical equation istime-symmetriif there
is a timetS such thatf (t + ts) = f (t − ts).

Therefore, the time-reversal invariance of an equation does not imply the
time-symmetry of its solutions: a time-reversal invariant law may be such that all
or most of the possible evolutions relative to it are individually time-asymmetric.
Price (1996) illustrates this point with the familiar analogy of a factory which
produces equal numbers of left-handed and right-handed corkscrews: the pro-
duction as a whole is completely unbiased, but each individual corkscrew is
asymmetric.

It is quite clear that these considerations are not applicable to the field equa-
tions as originally stated. However, the existence of a cosmic time allows to formu-
late the issue in familiar terms: under this condition, Einstein’s field equations are
time-reversal invariant in the sense that if thehij (t, x1, x2, x3) of Eq. (1) is a solu-
tion,hij (−t, x1, x2, x3) is also a solution. But the time-reversal invariance of these
equations does not prevent us from describing a time-asymmetric universe whose

8 The exception is the law that rules weak interactions; but they are so weak that it is difficult to see how
the macroscopic arrow of time can be derived from them. Therefore, as it is usual in the literature,
we will not address this question in this paper.
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space–time isasymmetric regarding its geometrical properties along the cosmic
time. This idea can also be formulated in terms of the concept of time-isotropy.

Definition 5.4. A temporally orientable space–time (M, g) (whereM is a four-
dimensional pseudo-Riemannian manifold andg is a Lorentzian metric forM) is
time-isotropicif there is a diffeomorphismd of M onto itself which reverses the
temporal orientations but preserves the metricg.

However, when we want to express the temporal symmetry of a space–time
having a cosmic time, it is necessary to strengthen the definition.

Definition 5.5. A temporally orientable space–time which admits a cosmic time
t is time-symmetricwith respect to some spacelike hypersurfacet = α, whereα
is a constant, if it is time-isotropic and the diffeomorphismd leaves fixed the
hypersurfacet = α.

Intuitively this means that, from the hypersurfacet = α, the space–time looks
the same in both temporal directions. Therefore, if a temporally orientable space–
time having a cosmic time is time-asymmetric, we will not find a spacelike hy-
persurfacet = α which splits the space–time in two “halves,” one the temporal
mirror image of the other regarding their intrinsic geometrical properties.

When we turn our attention to the standard models of present-day cosmology,
we find that it is not difficult to apply these concepts. In FLRW models, the time-
symmetry of space–time may manifest itself in two different ways according to
whether the universe has singular points in one or in both temporal extremities.9

Big Bang–Big Chill universes are manifestly time-asymmetric: since the scale
factora(t) increases with the cosmic timet , there is no hypersurfacet = α from
which the space–time looks the same in both temporal directions. In Big Bang–
Big Crunch universes, on the contrary,a(t) has a maximum value: therefore, the
space–time might be time-symmetric about the time of maximum expansion: this
is the case of some FLRW models with dust and radiation. However, in more gen-
eral cases (e.g. inflationary models) it is necessary to add one or many fields that
represent the matter-energy of the universe. Many interesting results have been
obtained, for instance, by modeling matter-energy as scalar fieldsφk(t): homo-
geneity is retained and the time-reversal invariance of the field equations is given
by the fact that, if [a(t), φk(t)] is a solution, [a(−t), φk(−t)] is also a solution.
In these cases, if we call the time of maximum expansiontME, the scale factor
a(t) may be such thata(tME+ t) 6= a(tME− t) (see, for instance, the models in
Castagninoet al., 2000, 2001). This means that a Big Bang-Big Crunch universe
may be a time-asymmetric object with respect to the metric of the space–time: this

9 This depends on the values of the factork and of the cosmological constant A.
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asymmetry, essentially grounded on geometrical considerations, allows us to dis-
tinguish between the two directions of the cosmic time, independently of entropic
considerations.

Up to this point we have argued for the possibility of describing time-
asymmetric universes by means of time-reversal invariant laws. But, what is the
reason to suppose that time-asymmetry has high probability? In order to complete
the argument, we will demonstrate that time-symmetric universes are highly im-
probable to the extent that time-symmetric solutions of the universe equations have
measure zero in the corresponding phase space.

Let us consider some model of the universe equations, that is, Einstein’s
equations plus the particular laws governing the fields present in the universe. All
known examples have the following two properties (e.g. see Castagninoet al.,
2000, 2001, but there are many other examples):

1. They are time-reversal invariant, namely, invariant under the transforma-
tion t →−t .

2. They are time-translation invariant, namely, invariant under the transfor-
mationt → t+ const10 (homogeneous time).

Let us consider the generic case of a FLRW universe with radiusa and matter
represented by a neutral scalar fieldφ. The dynamical variables are nowa,

•
a, φ,

•
φ.

They satisfy a generic Hamiltonian constraint11 :

H (a,
•
a, φ,

•
φ) = 0 (2)

which reduces the dimension of phase space from 4 to 3; then, we can consider a

phase space of variables
•
a, φ,

•
φ and

a = f (
•
a, φ,

•
φ) (3)

a function obtained solving Eq. (2).
If we want to obtain a time-symmetric continuous12 solution such thata ≥

0,13 there must be a timetS with respect to which a is symmetric:

a(tS+ t) = a(tS− t) and
•
a(tS) = 0

10We are referring to the equations that rule the behavior of the universe, not to the particular solutions
that normally do not have time-translation symmetry.

11 H is the 00 component of Einstein equation (4).
12We will disregard noncontinuous solutions since normally information do not pass through discon-

tinuities and we are only consideringconnecteduniverses where information can go from a point to
any other timelike connected point.

13As onlya2 appears in a FLRW metric, we will consider just the casea ≥ 0 since the pointa = 0 is
actually a singularity that cuts the time evolution.
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In order to obtain complete time-symmetry,φ must also be symmetric abouttS.
There are two cases: even symmetry

φ(tS+ t) = φ(tS− t) and
•
φ(tS) = 0

and odd symmetry

φ(tS+ t) = −φ(tS− t) and φ(tS) = 0

This means that time-symmetric trajectories necessarily pass trough the axes
(0,φ, 0) or (0, 0,

•
φ) of the phase space. From these “initial” conditions we can

propagate, using the evolution equations, the corresponding trajectories; this oper-
ation will produce two surfaces that contain the trajectories with at least one point
of symmetry, that is, that contain all the possible time-symmetric trajectories. Both
surfaces have dimension 2< 3 (namely, the dimension of our phase space). The
usual Liouville measure of these sets is zero, and also any measure absolutely
continuous with respect to it. In this way we have proved that, for generic models
of the universe, the solutions are time-asymmetric with the exception of a subset
of solutions of measure zero. q.e.d.

This theorem can be easily generalized to the case whereφ has many compo-
nents, or to the case of many fields with many components. Some of these fields
may be fluctuations of the metric: in this case, we must Fourier transform the
equations, and this would allow us to reproduce the theorem only witht functions.
Since properties 1 and 2 (time-reversal invariance and time-translation invariance)
are also true in the classical statistical case, the theorem can be also demonstrated
in this case.14 And also in the quantum case, albeit some quantum gravity prob-
lems like time definition (Castagnino, 1989; Castagnino and Lombardo, 1993;
Castagnino Mazzitelli, 1990).

6. FROM THE GLOBAL ARROW TO THE LOCAL ARROW

As we have seen, in a temporally orientable space–time a continuous nonvan-
ishing timelike vector fieldγ µ(x) can be defined all over the manifold. At this stage,
the universe istemporally orientablebut not yettemporally oriented, because the
distinction betweenγ µ(x) and−γ µ(x) is just conventional. Now time-asymmetry
comes into play. In a temporally orientable time-asymmetric space–time, any time
tA splits the manifold into two sections that are different to each other: the section
t > tA is substantiallydifferent than the sectiont < tA. We can chose any point
x0 with t = tA and conventionally consider that−γ µ(x0) points towardt < tA

andγ µ(x0) points towardt > tA or vice versa: in any case we have established a
substantial difference betweenγ µ(x0) and−γ µ(x0). We can conventionally call

14When the phase space has infinite dimensions, it is better to use the notion of dimension instead of
that of measure.
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“future” the direction ofγ µ(x0) and “past” the direction of−γ µ(x0) or vice versa,
but in any case past is substantially different than future. Now we can extend this
difference to the whole continuous fieldsγ µ(x) and−γ µ(x): in this may, the time-
orientation of the space–time has been established. Since the fieldγ µ(x) is defined
all over the manifold, it can be usedlocally at each pointx to define the future
and the past lobes: for instance, if we have called “future” the direction ofγ µ(x),
C+(x) containsγ µ(x) andC−(x) contains−γ µ(x).

Even if this solution is general for generic temporally orientable universes
having a cosmic time, it would be desirable to show how the global time-orientation
is reflected in everyday physics, where time-asymmetry manifests itself in terms
of time-asymmetric energy fluxes. This task will lead us to impose reasonable
restrictions in the considered cosmological model in such a way that the explanation
of local time-asymmetry applies, not to the generic case, but rather to the particular
case of our own universe.

i. Up to this point, global time-asymmetry has been considered as a substan-
tial asymmetry of the geometry of the universe, embodied in the metric
tensorgµν(x) defined at each point of the space–time. Perhaps the easiest
way to see how this geometrical time-asymmetry is translated into local
physical terms is to consider the energy-momentum tensorTµν , which
can be computed by usinggµν(x) and its derivatives through Einstein’s
equation

Tµν − 1

8π

(
Rµν(g)− 1

2
gµνR(g)−3gµν

)
= 0 (4)

The curvaturesRµν(g), R(g) can be obtained fromgµν(x) and its deriva-
tives, and3 is the cosmological constant. Now we impose a first condi-
tion: that ourTµν turns out to be a “normal” or Type Ienergy-momentum
tensor. Then,Tµν can be written as

Tµν = s0V (0)
µ V (0)

ν +
3∑

i=1

si V
(i )
µ V (i )

ν (5)

where{V (0)
µ , V (i )

µ } is a well-defined orthonormal tetrad,V (0)
µ is timelike

and theV (i )
µ are spacelike (i = 1, 2, 3) (see Hawking and Ellis, 1973;

Lichnerowicz, 1955). Since we have assumed that the manifold is contin-
uous,gµν(x) and alsoTµν(x) are continuously defined over the manifold
(provided the derivatives ofgµν(x) are also continuous); this means that
V (0)
µ (x) is a continuous unitary timelike vector field defined all over the

manifold, which can play the role of the fieldγ µ(x) if everywheres0 6= 0
(if not, V (0)

µ , even if timelike, may change its sign whenso = 0).
Here we impose a second condition: that the universe satisfies the

dominant energy condition: i.e., T00 ≥ |Tµν | in any orthonormal basis
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(namely,so ≥ 0 and si ∈ [−so, so]). In this case,so 6= 015 and, then,
V (0)
µ (x) is continuous, timelike and nonvanishing. This means thatV (0)

µ (x)
can play the role ofγ µ(x), with the advantage that it has a relevant physical
origin. In this way, a time-orientation is chosen at each pointx of the man-
ifold, and the time-components ofTµν acquire definite signs according to
this orientation. Therefore we have translated the global time-asymmetry
into local terms, endowing the local arrow with a physical sense.

ii. Since we are now in local grounds, our new task is to understand thelocal
natureof the characters in the play. IfT00 ≥ |Tµν |, thenT00 ≥ |Ti 0|.
Therefore,T0µ, which is usually but not rigorously conceived as the
local energy flux, can also be considered as the coordinates of a timelike
(or lightlike) vector that can be usedγ µ(x). This holds for all presently
known forms of energy-matter and, so, there are in fact good reasons
for believing that this should be the case in almost all situations (for the
exceptions, see Visser, 1996).16

iii. But, is reallyT0µ the energy flux? To go even closer to every day physics,
we must remember thatTµν satisfy the “conservation” equation:

∇µTµν = 0

Nevertheless, as it is well known, this is not a true conservation equation
since∇µ is a covariant derivative. The usual conservation equation with
ordinary derivative reads

∂µτ
µν = 0

whereτµν is not a tensor and it is defined as

τµν =
√−g(Tµν + tµν)

where we have introduced atµν that reads

√−g tµν = 1

16π

[
Lgµν − ∂L

∂gµν , λ
gµν , λ

]
whereL is the system’s Lagrangian.tµν is also an homogeneous and
quadratic function of the connection0λµν (Landau and Lifchitz, 1970).
Now we can consider the coordinatesτ 0µ, which satisfy

∂µτ
0µ = ∂0τ

00+ ∂i τ
0i = 0

15If s0 = 0 ass0 ≥ |si | thensi = 0 andTµν = 0, and therefore{V (0)
µ , V (i )

µ } would be undefined.
16For example, some exceptions are Casimir effect, squeezed vacuum, Hawking evaporation, Hartle–

Hawking vacuum, negative cosmological constant, etc. Most of these objects are too strange with
respect to current observations of the universe to be considered as viable possibilities. Anyway, since
our aim here is to translate the global arrow into local terms, these objects are not relevant in the
local context of the region of the universe we inhabit.
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namely, a usual conservation equation. Even ifT0µ is not a four-vector,
it can be defined in each coordinate system: in each systemT00 can be
considered as the energy density andτ 0i as the energy flux (the Poynting
vector). This means that the fieldτ 0µ(x) represents the spatialtemporal
energy flow within the universe better than0µ.

In particular, in a local inertial frame where0λvµ = 0, we haveτµν =√−gTµν : in orthonormal coordinates, the dominant energy condition will be now
τ 00 ≥ |τ i 0| andτ 0µ will be timelike (or lightlike) and can be used asγ µ(x). Butτ 0µ

is just a local energy flow since it is defined in orthonormal local inertial frames.
Nevertheless, in any moving frame with respect to the former one, if the acceler-
ation of the moving frame is not very large, the (0λvµ)2 and thetµν are very small
and the energy flux in the moving frame is timelike (or lightlike) for all practical
purposes. This is precisely the case of the commoving frame of our present-day
universe.

In summary,τ 0µ (that can locally be considered as the four velocity of a
quantum of energy carrying a message) is a timelikelocal energy flux and

(a) It inherits the global time-asymmetry ofgµν(x), i.e., the geometrical
time-asymmetry of the universe.

(b) It translates the global time-asymmetry into the local level: the lobes
C−(x) receive an incoming flux of energy while the lobesC+(x) emit an
outgoing flux of energy and, therefore, both kinds of lobes are substan-
tially different.

Thus we can consider that the energy fluxτ 0µ is defined all over the universe,
and this local time-asymmetric flux is the agency that produces time-asymmetry
at every point within the universe. This phenomenon has been explained in all
details (Castagnino, 1998; Castagnino and Gunzig, 1997b, 1999; Castagnino, and
Laciana, 2002; Castagninoet al., 1996, 2002), where we have introduced the
classical Reichenbach-Davies diagram and the quantum, Reichenbach–Bohm dia-
gram to illustrate it. In these contexts it is very easy to deduce the different arrows
of time (electromagnetic, quaantum, thermodynamic, etc.) from the global time-
asymmetry of the universe. We refer the reader to those papers to complete our
view about the problem of the arrow of time. In particular, in Castagninoet al.(in
press-b) we have established the substantial difference between t-symmetric twins
corresponding to several fields of physics. Here we will only add a new case and
make a relevant remark:

i. We show in Castagninoet al. (in press) that, in the Taub cosmological
model, the Hamiltonian can be written as

H =
(√

6pq + 1√
6

√
p2

u + (12π )2e6u

)(√
6pq − 1√

6

√
p2

u + (12π )2e6u

)
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showing a two sheet structure, that is, another case of t-symmetric twins
(clock-symmetric twins, in the language of (Castagninoet al., in press-a).
The constraintH = 0 force us to choose one sheet-twin: the energy flux,
which establishes the substantial difference between the two members of
the pair, supplies the criterion for the selection.

ii. The Postulate A.3 of the Axiomatic Quantum Field Theory (see Haag,
1996, p. 56, Eq. II.1.15) sates that the spectrum of the energy-momentum
operatorpµ is confined to the future light semi-cone, that is, its eigenvalues
pµ satisfy

p2 ≥ 0 p0 ≥ 0

Condition P0 ≥ 0 makes the theory (and, as a consequence, all particle
physics) a non–time-reversal invariant theory. But if we remember that
τ 0µ can be also considered as the linear momentum density,pµ ∼ τ 0µ, the
conditionp0 ≥ 0 turns out to be a consequence ofτ 00 ≥ |τ i 0|. Therefore,
instead of imposing Postulate A.3 as an axiom of the theory, it can be
justified on cosmological grounds.

7. CONCLUSION

The panorama is not completely closed yet: weak interactions should be
included in this scenario. However, this fact would not diminish the relevance of
the global nonentropic approach. From its very beginning, theoretical physics has
tried to combine its different chapters in an unified formalism, and it is well known
that unifications have always produced great advances in physics. Therefore, our
future challenge will be to unify the weak interactions explanation with the global
explanation, instead of abandoning the latter in favor of a local approach as many
local-minded physicists insist.

As it is well known, there is never a last word in physics. Nevertheless, we
can provisionally conclude that the global definition of the arrow of time can be
used as a solid basis for studying other problems related with the time-asymmetry
of the universe and its subsystems.
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